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Abstract: Light scattering off particles flowing through a two-slit interference pattern can be used 
to measure the shear stress of the fluid. We have designed and fabricated a miniature dif'fkactive 
optic sensor based on this principle. 
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1. Measurement  concept 

The goal of this sensor is to determine the shear stress of a fluid within the first few hundred microns from a wall. 
Within this region, the velocity gradient is  linear, u = c y ,  where u is the velocity, c is the shear stress, and y is the 
vertical coordinate. Our diffractive optical micro-sensor generates a linearly diverging fringe pattern as illustrated in 
Fig. 1.  The fringe spacing can be expressed as A = Ky , where K is the slope of the first non-vertical fringe. 
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Figure 1 .  Schematic of the  shear  stress sensor principle. 

As particles in the fluid flow through the linearly diverging fringes, they scatter light to a detector with a frequency f 
that  is proportional to the velocity  and  inversely proportional to the fringe separation, f = u / A  . Using the 
relations for u and A above, the measured  frequency  is directly proportional to the wall shear, 
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This technique was  first presented by Naqwi  and  Reynolds using conventional optics [l]. A non-linearity of the 
velocity profile or the fringe pattern will translate into  widening and skewness of the frequency distribution. 
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in a  metal  mask on the opposite side of a quartz substrate. The light diffracts from the slits and interferes to form 
linearly diverging fringes to a good approximation. The light scattered by particles traveling through the  fringe 
pattern is collected through a  window  in the metal  mask.  Another  DOE  on the backside focuses the light to an 
optical fiber connected to a detector. 
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Figure 2. Schematic of the  shear stress sensor  assembly. 

A series of simulations were  performed to aid in the design of the sensor. A finite-difference simulation of the 
m g e  pattern for 2 ym wide slits separated by 10 p is  shown in Figure 3. The fringe pattern displays a suitable 
number of fringes for adequate measurements. The number of high-contrast fringes is determined by the slit width 
and the divergence of the fringe pattern is determined by  the slit separation. 
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Figure 3. Fringe  pattern  resulting from 2 pm slits separated by 10 pm (propagation  of a finite-difference  solution 
of slit diffraction when  illumined by the  dual-line-focus laser  lens). 



3. Fabrication and testing 

The main sensor element was fabricated by two-sided lithography on a 500 pm thick quartz substrate. The slits and 
collecting window  on the front  were fabricated by  direct-write  electron-beam lithography followed by wet etching of 
evaporated chrome. The polymethyl methacrylate (PMMA) diffractive optical elements on the back were fabricated 
by analog direct-write electron-beam lithography followed by acetone development [2]. A photograph and atomic 
force microscope scan of the dual-line focus-laser lens are shown in Fig. 4. 

Figure 4. Photograph (left) and AFM scan (right) of the  center of the  dual-line-focus laser lens 

The shear stress sensor’s elements were assembled  into  a  package (Fig. 5) with  a diode laser (660 nm)  and  a port 
for the collection fiber. The overall size of this prototype  is 15 mm in diameter and 20 mm in length. The fringes 
were  imaged with a CCD camera using  a  microscope objective and are shown in  Fig. 5. The fringe divergence was 
measured to be linear with  a slope in close agreement with theory. The contrast is  very satisfactory and preliminary 
tests using a moving surface through the fringe pattern  yield  a clear signal. Testing of the receiver side of the sensor 
element  is  underway. 
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Figure 5. Shear stress sensor assembly (left) and  photographs  of the  fringes at different  heights above the surface (right). 
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